Our social systems are far more complex and harder to understand than our technological systems. Why, then, do we not use the same approach of making models of social systems and conducting laboratory experiments on those models before we try new laws and government programs in real life? The answer is often stated that our knowledge of social systems is insufficient for constructing useful models. But what justification can there be for the apparent assumption that we do not know enough to construct models but believe we do know enough to directly design new social systems by passing laws and starting new social programs? I am suggesting that we now do know enough to make useful models of social systems. Conversely, we do not know enough to design the most effective social systems directly without first going through a model-building experimental phase. But I am confident, and substantial supporting evidence is beginning to accumulate, that the proper use of models of social systems can lead to far better systems, laws, and programs.
It is now possible to construct in the laboratory realistic models of social systems. Such models are simplifications of the actual social system but can be far more comprehensive than the mental models that we otherwise use as the basis for debating governmental action.
Before going further, I should emphasize that there is nothing new in the use of models to represent social systems. Each of us uses models constantly. Every person in his private life and in his business life instinctively uses models for decision making. The mental image of the world around you which you carry in your head is a model. One does not have a city or a government or a country in his head. He has only selected concepts and relationships which he uses to represent the real system. A mental image is a model. All of our decisions are taken on the basis of models. All of our laws are passed on the basis of models. All executive actions are taken on the basis of models. The question is not to use or ignore models. The question is only a choice among alternative models.
The mental model is fuzzy. It is incomplete. It is imprecisely stated. Furthermore, within one individual, a mental model changes with time and even during the flow of a single conversation. The human mind assembles a few relationships to fit the context of a discussion. As the subject shifts so does the model. When only a single topic is being discussed, each participant in a conversation employs a different mental model to interpret the subject. Fundamental assumptions differ but are never brought into the open. Goals are different and are left unstated. It is little wonder that compromise takes so long. And it is not surprising that consensus leads to laws and programs that fail in their objectives or produce new difficulties greater than those that have been relieved.
For these reasons we stress the importance of being explicit about assumptions and interrelating them in a computer model. Any concept or assumption that can be clearly described in words can be incorporated in a computer model. When done, the ideas become clear. Assumptions are exposed so they may be discussed and debated.
But the most important difference between the properly conceived computer model and the mental model is in the ability to determine the dynamic consequences when the assumptions within the model interact with one another. The human mind is not adapted to sensing correctly the consequences of a mental model. The mental model may be correct in structure and assumptions but, even so, the human mind — either individually or as a group consensus — is most apt to draw the wrong conclusions. There is no doubt about the digital computer routinely and accurately tracing through the sequences of actions that result from following the statements of behavior for individual points in the model system. This inability of the human mind to use its own mental models is clearly shown when a computer model is constructed to reproduce the assumptions held by a single person. In other words, the model is refined until it is fully agreeable in all its assumptions to the perceptions and ideas of a particular person. Then, it usually happens that the system that has been described does not act the way the person anticipated. Usually there is an internal contradiction in mental models between the assumed structure and the assumed future consequences. Ordinarily the assumptions about structure and internal motivations are more nearly correct than are the assumptions about the implied behavior.
The kind of computer models that I am discussing are strikingly similar to mental models. They are derived from the same sources. They may be discussed in the same terms. But computer models differ from mental models in important ways. The computer models are stated explicitly. The "mathematical" notation that is used for describing the model is unambiguous. It is a language that is clearer, simpler, and more precise than such spoken languages as English or French. Its advantage is in the clarity of meaning and the simplicity of the language syntax. The language of a computer model can be understood by almost anyone, regardless of educational background. Furthermore, any concept and relationship that can be clearly stated in ordinary language can be translated into computer model language.
There are many approaches to computer models. Some are naive. Some are conceptually and structurally inconsistent with the nature of actual systems. Some are based on methodologies for obtaining input data that commit the models to omitting major concepts and relationships in the psychological and human reaction areas that we all know to be crucial. With so much activity in computer models and with the same terminology having different meanings in the different approaches, the situation must be confusing to the casual observer. The key to success is not in having a computer; the important thing is how the computer is used. With respect to models, the key is not to computerize a model, but instead to have a model structure and relationships which properly represent the system that is being considered.
I am speaking here of a kind of computer model that is very different from the models that are now most common in the social sciences. Such a computer model is not derived statistically from time-series data. Instead, the kind of computer model I am discussing is a statement of system structure. It contains the assumptions being made about the system. The model is only as good as the expertise which lies behind its formulation. Great and correct theories in physics or in economics are few and far between. A great computer model is distinguished from a poor one by the degree to which it captures more of the essence of the social system that it presumes to represent. Many mathematical models are limited because they are formulated by techniques and according to a conceptual structure that will not accept the multiple-feedback-loop and nonlinear nature of real systems. Other models are defective because of lack of knowledge or deficiencies of perception on the part of the persons who have formulated them.
But a recently developed kind of computer modeling is now beginning to show the characteristics of behavior of actual systems. These models explain why we are having the present difficulties with our actual social systems and furthermore explain why so many efforts to improve social systems have failed. In spite of their shortcomings, models can now be constructed that are far superior to the intuitive models in our heads on which we are now basing national social programs.
This approach to the dynamics of social systems differs in two important ways from common practice in social sciences and government. There seems to be a common attitude that the major difficulty is shortage of information and data. Once data is collected, people then feel confident in interpreting the implications. I differ on both of these attitudes. The problem is not shortage of data but rather our inability to perceive the consequences of the information we already possess. The system dynamics approach starts with the concepts and information on which people are already acting. Generally these are sufficient. The available perceptions are then assembled in a computer model which can show the consequences of the well-known and properly perceived parts of the system. Generally, the consequences are unexpected.
There are many approaches to computer models. Some are naive. Some are conceptually and structurally inconsistent with the nature of actual systems. Some are based on methodologies for obtaining input data that commit the models to omitting major concepts and relationships in the psychological and human reaction areas that we all know to be crucial. With so much activity in computer models and with the same terminology having different meanings in the different approaches, the situation must be confusing to the casual observer. The key to success is not in having a computer; the important thing is how the computer is used. With respect to models, the key is not to computerize a model, but instead to have a model structure and relationships which properly represent the system that is being considered.
I am speaking here of a kind of computer model that is very different from the models that are now most common in the social sciences. Such a computer model is not derived statistically from time-series data. Instead, the kind of computer model I am discussing is a statement of system structure. It contains the assumptions being made about the system. The model is only as good as the expertise which lies behind its formulation. Great and correct theories in physics or in economics are few and far between. A great computer model is distinguished from a poor one by the degree to which it captures more of the essence of the social system that it presumes to represent. Many mathematical models are limited because they are formulated by techniques and according to a conceptual structure that will not accept the multiple-feedback-loop and nonlinear nature of real systems. Other models are defective because of lack of knowledge or deficiencies of perception on the part of the persons who have formulated them.
But a recently developed kind of computer modeling is now beginning to show the characteristics of behavior of actual systems. These models explain why we are having the present difficulties with our actual social systems and furthermore explain why so many efforts to improve social systems have failed. In spite of their shortcomings, models can now be constructed that are far superior to the intuitive models in our heads on which we are now basing national social programs.
This approach to the dynamics of social systems differs in two important ways from common practice in social sciences and government. There seems to be a common attitude that the major difficulty is shortage of information and data. Once data is collected, people then feel confident in interpreting the implications. I differ on both of these attitudes. The problem is not shortage of data but rather our inability to perceive the consequences of the information we already possess. The system dynamics approach starts with the concepts and information on which people are already acting. Generally these are sufficient. The available perceptions are then assembled in a computer model which can show the consequences of the well-known and properly perceived parts of the system. Generally, the consequences are unexpected.
*This was extracted from a paper (Reference item # D-4468) copyrighted in 1971 by Jay W. Forrester. It is based on his testimony for the Subcommittee on Urban Growth of the Committee on Banking and Currency, U.S. House of Representatives, on October 7, 1970.
No comments:
Post a Comment