Suppose in the basic world system of Figures 1 and 2 we ask how to sustain the quality of life which is beginning to decline after 1950. One way to attempt this, and it is the way the world is now choosing, might be to increase the rate of industrialization by raising the rate of capital investment. Models of the kind we are here using make such hypothetical questions answerable in a few minutes and at negligible cost. Figure 4 shows what happens if the "normal" rate of capital accumulation is increased by 20 per cent in 1970. The pollution crisis reappears. This time the cause is not the more efficient use of natural resources but the upsurge of industrialization which overtaxes the environment before resource depletion has a chance to depress industrialization. Again, an "obvious" desirable change in policy has caused troubles worse than the ones that were originally being corrected.
This is important, not only for its own message but because it demonstrates how an apparently desirable change in a social system can have unexpected and even disastrous results.
Figure 4 should make us cautious about rushing into programs on the basis of short-term humanitarian impulses. The eventual result can be anti-humanitarian. Emotionally inspired efforts often fall into one of three traps set for us by the nature of social systems: The programs are apt to address symptoms rather than causes and attempt to operate through points in the system that have little leverage for change; the characteristic of systems whereby a policy change has the opposite effect in the short run from the effect in the long run can eventually cause deepening difficulties after a sequence of short-term actions; and the effect of a program can be along an entirely different direction than was originally expected, so that suppressing one symptom only causes trouble to burst forth at another point.
Figure 5 retains the 20 per cent additional capital investment rate after 1970 from Figure 4 but in addition explores birth reduction as a way of avoiding crisis. Here the "normal" birth rate has been cut in half in 1970. (Changes in normal rates refer to coefficients which have the specified effect if all other things remain the same. But other things in the system change and also exert their effect on the actual system rates.) The result shows interesting behavior. Quality of life surges upward for 30 years for the reasons that are customarily asserted. Food-per-capita grows, material standard of living rises, and crowding does not become as great. But the more affluent world population continues to use natural resources and to accumulate capital plant at about the same rate as in Figure 4. Load on the environment is more closely related to industrialization than to population and the pollution crisis occurs at about the same point in time as in Figure 4.
Figure 5 shows that the 50 per cent reduction in "normal" birth rate in 1970 was sufficient to start a decline in total population. But the rising quality of life and the reduction of pressures act to start the population curve upward again. This is especially evident in other computer runs where the reduction in "normal" birthrate is not so drastic. Serious questions are raised by this investigation about the effectiveness of birth control as a means of controlling population. The secondary consequence of starting a birth control program will be to increase the influences that raise birth rate and reduce the apparent pressures that require population control. A birth control program which would be effective, all other things being equal, may largely fail because other things will not remain equal. Its very incipient success can set in motion forces to defeat the program.
Figure 6 combines the reduced resource usage rate and the increased capital investment rate of Figures 3 and 4. The result is to make the population collapse occur slightly sooner and more severely. Based on the modified system of Figure 6, Figure 7 then examines the result if technology finds ways to reduce the pollution generated by a given degree of industrialization. Here in Figure 7, the pollution rate, other things being the same, is reduced by 50 per cent from that in Figure 6. The result is to postpone the day of reckoning by 20 years and to allow the world population to grow 25 per cent greater before the population collapse occurs. The "solution" of reduced pollution has, in effect, caused more people to suffer the eventual consequences. Again we see the dangers of partial solutions. Actions at one point in a system that attempt to relieve one kind of distress produce an unexpected result in some other part of the system. If the interactions are not sufficiently understood, the consequences can be as bad as or worse than those that led to the initial action.
There are no Utopias in our social systems. There appear to be no sustainable modes of behavior that are free of pressures and stresses. But there are many possible modes and some are more desirable than others. Usually, the more attractive kinds of behavior in our social systems seem to be possible only if we have a good understanding of the system dynamics and are willing to endure the self-discipline and pressures that must accompany the desirable mode. The world system of Figure 1 can exhibit modes that are more hopeful than the crises of Figures 2 through 7. But to develop the more promising modes will require restraint and dedication to a long-range future that man may not be capable of sustaining.
Figure 8 shows the world system if several policy changes are adopted together in the year 1970. Population is stabilized. Quality of life rises about 50 per cent. Pollution remains at about the 1970 level. Would such a world be accepted? It implies an end to population and economic growth.
In Figure 8 the normal rate of capital accumulation is reduced 40 per cent from its previous value. The "normal" birth rate is reduced 50 per cent from its earlier value. The "normal" pollution generation is reduced 50 per cent from the value before 1970. The "normal" rate of food production is reduced 20 per cent from its previous value. (These changes in "normal" values are the changes for a specific set of system conditions. Actual system rates continue to be affected by the varying conditions of the system.) But reduction in investment rate and reduction in agricultural emphasis are counterintuitive and not likely to be discovered or accepted without extensive system studies and years of argument — perhaps more years than are available. The changes in pollution generation and natural resource usage may be easier to understand and to achieve. The severe reduction in world-wide birth rate is the most doubtful. Even if technical and biological methods existed, the improved condition of the world might remove the incentive for sustaining the birth reduction emphasis and discipline.
*This was extracted from a paper (Reference item # D-4468) copyrighted in 1971 by Jay W. Forrester. It is based on his testimony for the Subcommittee on Urban Growth of the Committee on Banking and Currency, U.S. House of Representatives, on October 7, 1970.
No comments:
Post a Comment