Friday, June 28, 2019

A New Approach to Social Systems*

It is my basic theme that the human mind is not adapted to interpreting how social systems behave. Our social systems belong to the class called multi-loop nonlinear feedback systems. In the long history of evolution it has not been necessary for man to understand these systems until very recent historical times. Evolutionary processes have not given us the mental skill needed to properly interpret the dynamic behavior of the systems of which we have now become a part.

In addition, the social sciences have fallen into some mistaken "scientific" practices which compound man's natural shortcomings. Computers are often being used for what the computer does poorly and the human mind does well. At the same time the human mind is being used for what the human mind does poorly and the computer does well. Even worse, impossible tasks are attempted while achievable and important goals are ignored.

Until recently there has been no way to estimate the behavior of social systems except by contemplation, discussion, argument, and guesswork. To point a way out of our present dilemma about social systems, I will sketch an approach that combines the strength of the human mind and the strength of today's computers. The approach is an outgrowth of developments over the last 40 years, in which much of the research has been at the Massachusetts Institute of Technology. The concepts of feedback system behavior apply sweepingly from physical systems through social systems. The ideas were first developed and applied to engineering systems. They have now reached practical usefulness in major aspects of our social systems.

I am speaking of what has come to be called industrial dynamics. The name is a misnomer because the methods apply to complex systems regardless of the field in which they are located. A more appropriate name would be system dynamics. In our own work, applications have been made to corporate policy, to the dynamics of diabetes as a medical system, to the growth and stagnation of an urban area, and most recently to world dynamics representing the interactions of population, pollution, industrialization, natural resources, and food. System dynamics, as an extension of the earlier design of physical systems, has been under development at M.I.T. since 1956. The approach is easy to understand but difficult to practice. Few people have a high level of skill; but preliminary work is developing all over the world. Some European countries and especially Japan have begun centers of education and research.

* This was extracted from a paper (Reference item # D-4468) copyrighted in 1971 by Jay W. Forrester. It is based on his testimony for the Subcommittee on Urban Growth of the Committee on Banking and Currency, U.S. House of Representatives, on October 7, 1970.

No comments:

Post a Comment